Assessment of chk1 phosphorylation as a pharmacodynamic biomarker of chk1 inhibition.
نویسندگان
چکیده
PURPOSE Chk1 inhibitors, such as AZD7762, are in clinical development in combination with cytotoxic agents for the treatment of solid tumors, including pancreatic cancers. To maximize the likelihood of their clinical success, it is essential to optimize drug scheduling as well as pharmacodynamic biomarkers in preclinical models. EXPERIMENTAL DESIGN We tested multiple schedules of administration of gemcitabine and AZD7762 on the survival of pancreatic cancer cells. Potential pharmacodynamic biomarkers including pChk1, pChk2, pHistone H3, and caspase-3 were evaluated in vitro, followed by assessment of promising candidate biomarkers in vivo. We then went on to determine the contributions of PP2A and DNA damage to the mechanism(s) of induction of the identified biomarker, pS345 Chk1. RESULTS AZD7762 given during and after or after gemcitabine administration produced maximum chemosensitization. In vivo, AZD7762 significantly inhibited the growth of pancreatic tumor xenografts in response to gemcitabine. Of the biomarkers assessed, pS345 Chk1 was most consistently increased in response to gemcitabine and AZD7762 in tumors and normal tissues (hair follicles). pS345 Chk1 induction in response to gemcitabine and AZD7762 occurred in the presence of PP2A inhibition and in association with elevated γH2AX, suggesting that DNA damage is an underlying mechanism. CONCLUSIONS AZD7762 sensitizes pancreatic cancer cells and tumors to gemcitabine in association with induction of pS345 Chk1. Together these data support the clinical investigation of AZD7762 with gemcitabine in pancreatic cancer under a dosing schedule in which gemcitabine is administered concurrent with or before AZD7762 and in conjunction with skin biopsies to measure pS345 Chk1.
منابع مشابه
Cancer Therapy: Preclinical Assessment of Chk1 Phosphorylation as a Pharmacodynamic Biomarker of Chk1 Inhibition
Purpose: Chk1 inhibitors, such as AZD7762, are in clinical development in combination with cytotoxic agents for the treatment of solid tumors, including pancreatic cancers. To maximize the likelihood of their clinical success, it is essential to optimize drug scheduling as well as pharmacodynamic biomarkers in
متن کاملPhosphorylation of Chk1 by ATR is antagonized by a Chk1-regulated protein phosphatase 2A circuit.
In higher eukaryotic organisms, the checkpoint kinase 1 (Chk1) contributes essential functions to both cell cycle and checkpoint control. Chk1 executes these functions, in part, by targeting the Cdc25A protein phosphatase for ubiquitin-mediated proteolysis. In response to genotoxic stress, Chk1 is phosphorylated on serines 317 (S317) and 345 (S345) by the ataxia-telangiectasia-related (ATR) pro...
متن کاملPoly(ADP-ribose) polymerase 1 modulates the lethality of CHK1 inhibitors in carcinoma cells.
Prior studies have demonstrated that inhibition of CHK1 can promote the activation of extracellular signal-regulated kinases 1 and 2 (ERK1/2) and phosphorylation of histone H2AX and that inhibition of poly(ADP-ribose) polymerase 1 (PARP1) can affect growth factor-induced ERK1/2 activation. The present studies were initiated to determine whether CHK1 inhibitors interacted with PARP1 inhibition t...
متن کاملHistone Deacetylase Inhibitors Downregulate Checkpoint Kinase 1 Expression to Induce Cell Death in Non-Small Cell Lung Cancer Cells
BACKGROUND Histone deacetylase inhibitors (HDACis) are promising anticancer drugs; however, the molecular mechanisms leading to HDACi-induced cell death have not been well understood and no clear mechanism of resistance has been elucidated to explain limited efficacy of HDACis in clinical trials. METHODS AND FINDINGS Here, we show that protein levels of checkpoint kinase 1 (Chk1), which has a...
متن کاملAtaxia-telangiectasia-mutated (ATM) and NBS1-dependent phosphorylation of Chk1 on Ser-317 in response to ionizing radiation.
In mammals, the ATM (ataxia-telangiectasia-mutated) and ATR (ATM and Rad3-related) protein kinases function as critical regulators of the cellular DNA damage response. The checkpoint functions of ATR and ATM are mediated, in part, by a pair of checkpoint effector kinases termed Chk1 and Chk2. In mammalian cells, evidence has been presented that Chk1 is devoted to the ATR signaling pathway and i...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Clinical cancer research : an official journal of the American Association for Cancer Research
دوره 17 11 شماره
صفحات -
تاریخ انتشار 2011